Discriminative Label Relaxed Regression with Adaptive Graph Learning

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Semi-Supervised Learning with Discriminative Least Squares Regression

Semi-supervised learning plays a significant role in multi-class classification, where a small number of labeled data are more deterministic while substantial unlabeled data might cause large uncertainties and potential threats. In this paper, we distinguish the label fitting of labeled and unlabeled training data through a probabilistic vector with an adaptive parameter, which always ensures t...

متن کامل

Abstract of " Discriminative Methods for Label Sequence Learning " Ii Discriminative Methods for Label Sequence Learning

of “Discriminative Methods for Label Sequence Learning” by Yasemin Altun, Ph.D., Brown University, May 2005. Discriminative learning framework is one of the very successful fields of machine learning. The methods of this paradigm, such as Boosting and Support Vector Machines, have significantly advanced the state-of-the-art for classification by improving the accuracy and by increasing the appl...

متن کامل

Confidence-Rated Discriminative Partial Label Learning

Partial label learning aims to induce a multi-class classifier from training examples where each of them is associated with a set of candidate labels, among which only one label is valid. The common discriminative solution to learn from partial label examples assumes one parametric model for each class label, whose predictions are aggregated to optimize specific objectives such as likelihood or...

متن کامل

Discriminative Learning for Label Sequences via Boosting

This paper investigates a boosting approach to discriminative learning of label sequences based on a sequence rank loss function. The proposed method combines many of the advantages of boosting schemes with the efficiency of dynamic programming methods and is attractive both, conceptually and computationally. In addition, we also discuss alternative approaches based on the Hamming loss for labe...

متن کامل

Learning with Relaxed Supervision

For weakly-supervised problems with deterministic constraints between the latent variables and observed output, learning necessitates performing inference over latent variables conditioned on the output, which can be intractable no matter how simple the model family is. Even finding a single latent variable setting that satisfies the constraints could be difficult; for instance, the observed ou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Intelligence and Neuroscience

سال: 2020

ISSN: 1687-5273,1687-5265

DOI: 10.1155/2020/8852137